Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 497278
Title Methanogens, sulphate and heavy metals: a complex system
Author(s) Luz Ferreira Martins Paulo, L. Da; Stams, A.J.M.; Machado de Sousa, D.Z.
Source Reviews in Environmental Science & Bio-technology 14 (2015)4. - ISSN 1569-1705 - p. 537 - 553.
DOI http://dx.doi.org/10.1007/s11157-015-9387-1
Department(s) Microbiological Laboratory
VLAG
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2015
Abstract Anaerobic digestion (AD) is a well-established technology used for the treatment of wastes and wastewaters with high organic content. During AD organic matter is converted stepwise to methane-containing biogas—a renewable energy carrier. Methane production occurs in the last AD step and relies on methanogens, which are rather sensitive to some contaminants commonly found in wastewaters (e.g. heavy metals), or easily outcompeted by other groups of microorganisms (e.g. sulphate reducing bacteria, SRB). This review gives an overview of previous research and pilot-scale studies that shed some light on the effects of sulphate and heavy metals on methanogenesis. Despite the numerous studies on this subject, comparison is not always possible due to differences in the experimental conditions used and parameters explained. An overview of the possible benefits of methanogens and SRB co-habitation is also covered. Small amounts of sulphide produced by SRB can precipitate with metals, neutralising the negative effects of sulphide accumulation and free heavy metals on methanogenesis. Knowledge on how to untangle and balance sulphate reduction and methanogenesis is crucial to take advantage of the potential for the utilisation of biogenic sulphide as a metal detoxification agent with minimal loss in methane production in anaerobic digesters.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.