Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 497588
Title Sediment transport capacity and its response to hydraulic parameters in experimental rill flow on steep slope
Author(s) Wang, Z.; Yang, X.; Liu, J.; Yuan, Y.
Source Journal of Soil and Water Conservation 70 (2015)1. - ISSN 0022-4561 - p. 36 - 44.
Department(s) Soil Physics and Land Management
Publication type Refereed Article in a scientific journal
Publication year 2015
Abstract Sediment transport capacity must be considered when developing physical models of soil erosion. The effects of related hydraulic parameters (e.g., flow discharge, slope gradient, and flow velocity), and of force predictors (e.g., shear stress, stream power, and unit stream power) on sediment transport capacity in rill erosion are still poorly known on the farmland of the Loess Plateau in China where rill erosion is common. We conducted a series of experiments to simulate and evaluate the sediment transport capacity of rill flow in a nonerodible rill flume. The test sediment was the loessial soil of the farmland of the Loess Plateau. Five flow discharges ranging from 0.22 to 0.67 × 10−3 m2 s−1 (0.00237 to 0.00721 ft2 sec−1) and five slope gradients ranging from 15.8% to 38.4% were tested. Sediment transport capacity increased with both flow discharge and slope gradient, as expected, but was more sensitive to flow discharge than to slope gradient, unlike other similar studies. Mean flow velocity, related to the flow discharge, was strongly correlated with sediment transport capacity (r2 = 0.93). Stream power was the best predictor of sediment transport capacity; shear stress and unit stream power, with critical values of 0.55 W m−2 and 0.02 m s−1 (0.04 mi hr−1) respectively, were poor predictors. An empirical equation of sediment transport capacity of the loessial soil for rill flow was developed. Our results present a different view, compared to previous studies, of the relationship of sediment transport capacity with discharge and slopes, especially with lower discharges, steep slopes, and loessial soil. Further study should be conducted to evaluate the performance of farmland soil at various slopes and discharges.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.