Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 497636
Title Activation energy of the disruption of gel networks in relation to elastically stored energy in fine-stranded ovalbumin gels
Author(s) Munialo, C.D.; Linden, E. van der; Jongh, H.H.J. de
Source Food Hydrocolloids 55 (2016). - ISSN 0268-005X - p. 163 - 171.
DOI http://dx.doi.org/10.1016/j.foodhyd.2015.11.014
Department(s) Physics and Physical Chemistry of Foods
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Recoverable energy - network structure - disruption - ovalbumin - activation energy - fine-stranded
Abstract The aim of this study was to relate the activation energy of the disruption of ovalbumin networks to elastically stored energy (i.e. recoverable energy, RE) obtained from mechanical deformation tests. To this end, heat-set ovalbumin gels were prepared at a fixed volume fraction and pH, but varying incubation temperatures. The activation energy required to disrupt the gels was derived from the Arrhenius equation. Increasing incubation temperature from 65 to 95 °C during gel formation resulted in a gradual increase in the activation energy up to a factor of ∼ 8. Gels obtained at or just below the protein denaturation temperature of around 75 °C had significantly lower recoverable energy (RE). These latter gels also had lower fracture stress and strain. At incubation temperatures above 70 °C RE was constant around 75 %, although a steady increase in activation energy was observed. This demonstrates that storing energy in a protein network is not directly related to the interactions that make up the network. A combination of electron microscopy, water holding, and stress relaxation experiments were performed to study the different energy dissipation modes. It was shown that different dissipation modes for various gels were comparable, and this explains why the RE was similar, with the exception of gels prepared at lower incubation temperatures where (micro) fracture events could have occurred that lowered the RE. These results suggest that RE is not a network characteristic related to microstructural or smaller length scale interactions, but the result of various material-related energy dissipation mechanisms.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.