Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 497640
Title Effects of spatial plant-soil feedback heterogeneity on plant performance in monocultures
Author(s) Wubs, E.R.J.; Bezemer, T.M.
Source Journal of Ecology (2016). - ISSN 0022-0477 - p. 364 - 376.
DOI http://dx.doi.org/10.1111/1365-2745.12521
Department(s) Laboratory of Nematology
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) grasslands - heterogeneous soil - plant-plant interactions - plant-soil (below-ground) interactions - soil-borne antagonists - spatial grain - spatial interactions - upscaling
Abstract 1. Plant-soil feedback (PSF) effects have almost exclusively been quantified on homogeneous soils, but as different plant species will influence their local soil differently in reality PSF effects will be spatially heterogeneous. Whether plant performance in soils with spatially heterogeneous PSF can be predicted from pot experiments with homogeneous soils is unclear.
2. In a greenhouse experiment we tested the response of monocultures of six grassland species (two grasses, two legumes, and two forbs) to three spatially explicit treatments (fine-grain heterogeneity, coarse-grain heterogeneity, and homogeneous). Sixteen patches of conditioned soil (~6x6 cm) were placed within each container. For homogeneous treatments all patches contained the same conditioned soil within a container. The fine-grained heterogeneous treatment contained four differently conditioned soils that were applied following a Latin square design, while for the coarse-grained heterogeneous treatment four contiguous square blocks of four cells each were created in each container.
3. In general species grew worse on soil conditioned by conspecifics. However, when the biomass production on all homogeneous soil treatments (own and foreign soils) was averaged and compared to the heterogeneous treatments, we found that biomass production was lower than expected in the heterogeneous soils. This effect of heterogeneity depended on both the conditioning and test species, but most heterogeneity effects were negative. The grain of the heterogeneity (coarse vs. fine: at the chosen spatial scale) did not affect plant performance.
4. We hypothesize that a more diverse soil community is present in spatially heterogeneous soils. This increases i) the chance of plants to encounter its antagonists, which may then rapidly increase in numbers; and ii) the scope for synergistic co-infections. Together this may lead to non-additive responses of plants to spatial heterogeneity in PSF.
5. Synthesis. Plant performance was lower in spatially heterogeneous soils than predicted by spatially homogeneous soils. In natural grasslands that have mixed plant communities conditioning the soil plant-soil feedback (PSF) effects on plant performance may therefore be more negative than what is predicted from pot experiments. Our results emphasise the need to incorporate the spatial dynamics of PSF both in empirical and modelling studies if we are to understand the role of PSF in plant-plant interactions and plant community dynamics.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.