Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 498177
Title Strength of microbeads for the encapsulation of heat sensitive, hydrophobic components
Author(s) Leusden, P. van; Hartog, G.J.M. den; Bast, A.; Postema, M.; Linden, E. van der; Sagis, L.M.C.
Source Food Hydrocolloids 56 (2016). - ISSN 0268-005X - p. 318 - 324.
DOI https://doi.org/10.1016/j.foodhyd.2015.12.017
Department(s) Physics and Physical Chemistry of Foods
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Cold-set gelation - Encapsulation - Gelation methods - Microbeads - Strength
Abstract

Hydrophobic food ingredients sensitive to degradation can be protected from their environment by microencapsulation. In an O/W1/W2 system, these hydrophobic compounds are dissolved in oil droplets, dispersed within a gelled matrix microbead (W1), which forms a barrier. The stability and degree of protection delivered by the gel matrix depends on its structure and strength, which in turn depend on the gelling process. For heat sensitive ingredients this process is typically a cold-set gelling process. We investigated the effect of variations in matrix polymer (alginate and WPI aggregates), gelling agent (acid and calcium), and method of gelation (internal and external), on the ability of microbeads to retain oil droplets, and retain a spherical shape during the extraction from the oil phase. External gelation with CaCl2 nanoparticles gave the smoothest and strongest microbeads for both protein and alginate, which we attribute to the formation of a shell at the interface of the bead during gelation. Microbeads produced by internal calcium gelation (induced with CaCO3 nanoparticles and GDL) containing the same amount of calcium showed less integrity and gave a mixture of smooth and rough beads. About half of the microbeads produced by acid induced gelation of WPI aggregates (using GDL to lower the internal pH) remained intact. When the pH was brought further from the isoelectric point, fewer beads remained intact. The method of gelation proved to be more important for the microbead integrity than type of matrix polymer, and external gelling was clearly superior to internal and acid induced gelation.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.