Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 498220
Title Baseline estimates of soil organic carbon by proximal sensing : Comparing design-based, model-assisted and model-based inference
Author(s) Viscarra Rossel, R.A.; Brus, D.J.; Lobsey, C.; Shi, Z.; McLachlan, G.
Source Geoderma 265 (2016). - ISSN 0016-7061 - p. 152 - 163.
DOI https://doi.org/10.1016/j.geoderma.2015.11.016
Department(s) Alterra - Soil, water and land use
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Design-based sampling - Infrared spectroscopy - Model-based inference - Proximal soil sensing - Regression estimator - Soil organic carbon stocks - Visible-near
Abstract

For baselining and to assess changes in soil organic carbon (C) we need efficient soil sampling designs and methods for measuring C stocks. Conventional analytical methods are time-consuming, expensive and impractical, particularly for measuring at depth. Here we demonstrate the use of proximal soil sensors for estimating the total soil organic C stocks and their accuracies in the 0-10 cm, 0-30 cm and 0-100 cm layers, and for mapping the stocks in each of the three depth layers across 2837 ha of grazing land. Sampling locations were selected by probability sampling, which allowed design-based, model-assisted and model-based estimation of the total organic C stock in the study area. We show that spectroscopic and gamma attenuation sensors can produce accurate measures of soil organic C and bulk density at the sampling locations, in this case every 5 cm to a depth of 1 m. Interpolated data from a mobile multisensor platform were used as covariates in Cubist to map soil organic C. The Cubist map was subsequently used as a covariate in the model-assisted and model-based estimation of the total organic C stock. The design-based, model-assisted and model-based estimates of the total organic C stocks in the study area were similar. However, the variances of the model-assisted and model-based estimates were smaller compared to those of the design-based method. The model-based method produced the smallest variances for all three depth layers. Maps helped to assess variability in the C stock of the study area. The contribution of the spectroscopic model prediction error to our uncertainty about the total soil organic C stocks was relatively small. We found that in soil under unimproved pastures, remnant vegetation and forests there is good rationale for measuring soil organic C beyond the commonly recommended depth of 0-30 cm.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.