Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 498369
Title Inferring bottlenecks from genome-wide samples of short sequence blocks
Author(s) Bunnefeld, Lynsey; Frantz, Laurent A.F.; Lohse, Konrad
Source Genetics 201 (2015)3. - ISSN 0016-6731 - p. 1157 - 1169.
DOI https://doi.org/10.1534/genetics.115.179861
Department(s) Animal Breeding and Genetics
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) Demographic inference - Generating function - Maximum likelihood - Population bottleneck - Sus cebifrons
Abstract

The advent of the genomic era has necessitated the development of methods capable of analyzing large volumes of genomic data efficiently. Being able to reliably identify bottlenecks—extreme population size changes of short duration—not only is interesting in the context of speciation and extinction but also matters (as a null model) when inferring selection. Bottlenecks can be detected in polymorphism data via their distorting effect on the shape of the underlying genealogy. Here, we use the generating function of genealogies to derive the probability of mutational configurations in short sequence blocks under a simple bottleneck model. Given a large number of nonrecombining blocks, we can compute maximum-likelihood estimates of the time and strength of the bottleneck. Our method relies on a simple summary of the joint distribution of polymorphic sites. We extend the site frequency spectrum by counting mutations in frequency classes in short sequence blocks. Using linkage information over short distances in this way gives greater power to detect bottlenecks than the site frequency spectrum and potentially opens up a wide range of demographic histories to blockwise inference. Finally, we apply our method to genomic data from a species of pig (Sus cebifrons) endemic to islands in the center and west of the Philippines to estimate whether a bottleneck occurred upon island colonization and compare our scheme to Li and Durbin’s pairwise sequentially Markovian coalescent (PSMC) both for the pig data and using simulations.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.