Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 498417
Title Inherent characteristics of sawtooth cycles can explain different glacial periodicities
Author(s) Omta, Anne Willem; Kooi, Bob W.; Voorn, G.A.K. van; Rickaby, Rosalind E.M.; Follows, Michael J.
Source Climate Dynamics 46 (2016)1. - ISSN 0930-7575 - p. 557 - 569.
DOI https://doi.org/10.1007/s00382-015-2598-x
Department(s) Biometris (PPO/PRI)
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Bifurcation - Emergent phenomena - Glacial-interglacial - Mid-Pleistocene Transition - Sawtooth cycle
Abstract

At the Mid-Pleistocene Transition about 1 Ma, the dominant periodicity of the glacial-interglacial cycles shifted from ~40 to ~100 kyr. Here, we use a previously developed mathematical model to investigate the possible dynamical origin of these different periodicities. The model has two variables, one of which exhibits sawtooth oscillations, resembling the glacial-interglacial cycles, whereas the other variable exhibits spikes at the rapid transitions. When applying a sinusoidal forcing with a fixed period, there emerges a rich variety of cycles with different periodicities, each being a multiple of the forcing period. Furthermore, the dominant periodicity of the system can change, while the forcing periodicity remains fixed, due to either random variations or different frequency components of the orbital forcing. Two key relationships stand out as predictions to be tested against observations: (1) the amplitude and the periodicity of the cycles are approximately linearly proportional to each other, a relationship that is also found in the (Formula presented.) temperature proxy. (2) The magnitude of the spikes increases with increasing periodicity and amplitude of the sawtooth. This prediction could be used to identify one or more currently hidden spiking variables driving the glacial-interglacial transitions. Essentially, the quest would be for any proxy record, concurrent with a dynamical model prediction, that exhibits deglacial spikes which increase at times when the amplitude/periodicity of the glacial cycles increases. In the specific context of our calcifier-alkalinity mechanism, the records of interest would be calcifier productivity and calcite accumulation. We believe that such a falsifiable hypothesis should provide a strong motivation for the collection of further records.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.