Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 498419
Title Integrated assessment of variable density-viscosity groundwater flow for a high temperature mono-well aquifer thermal energy storage (HT-ATES) system in a geothermal reservoir
Author(s) Zeghici, Răzvan Mihai; Oude Essink, Gualbert H.P.; Hartog, Niels; Sommer, Wijb
Source Geothermics 55 (2015). - ISSN 0375-6505 - p. 58 - 68.
DOI https://doi.org/10.1016/j.geothermics.2014.12.006
Department(s) Sub-department of Environmental Technology
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) Case-study in bucharest - Dispersivity analyses - Groundwater - High temperature aquifer thermal energy storage (HT-ATES) - Porous media - Variable density and viscosity
Abstract

The use of groundwater systems for heat storage increasingly gains interest among water managers, policy makers and researchers as a way to increase the efficiency of energy production and to allow the re-use of waste heat. Typically, mono-well storage systems are thought to require the use of separate aquifers. This study assessed the suitability of using heat and cold storage in a single deep geothermal aquifer for district heating and cooling. An integrated modelling approach was used for evaluating the controls on the energy efficiency of high temperature aquifer thermal energy storage (HT-ATES). The temperature difference (δ. T) of 40 °C between the injection temperatures for the cold and warm storages 20 °C and 60 °C was significant, which required accounting for transient variation of density and viscosity due to temperature and pressure within the modelling code SEAWAT. The developed model was applied for a geothermal reservoir from the Moesian platform, in the Bucharest area, Romania. The sensitivity of the system efficiency was analyzed with respect to the main physical (density, viscosity, longitudinal dispersivity) and operational design parameters (distance between warm and cold storage volumes, flow rates). Uncertainties in geological heterogeneity and the associated range in longitudinal dispersivity values (5-50. m) resulted in significant efficiency differences (80-55%). While reducing the lateral distance between multiple mono-well systems increased their overall efficiency due to positive thermal interference, a minimum vertical distance of (160. m) was required between the injection/extraction filters to prevent interaction between the cold and warm storage volumes. Overall, this study highlights the potential of using a cost-effective mono-well system for HT-ATES in single deep geothermal groundwater systems.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.