Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 498468
Title A transposon insertion in FLOWERING LOCUS T is associated with delayed flowering in Brassica rapa
Author(s) Zhang, Xueming; Meng, Lin; Liu, Bo; Hu, Yunyan; Cheng, Feng; Liang, Jianli; Aarts, Mark G.M.; Wang, Xiaowu; Wu, Jian
Source Plant Science 241 (2015). - ISSN 0168-9452 - p. 211 - 220.
DOI http://dx.doi.org/10.1016/j.plantsci.2015.10.007
Department(s) Groep KoornneefGroep Koornneef
EPS
Laboratory of Genetics
Publication type Refereed Article in a scientific journal
Publication year 2015
Keyword(s) Brassica rapa - FLOWERING LOCUS T - Flowering time - Loss-of-function allele - Quantitative trait locus (QTL)
Abstract

Long days and vernalization accelerate the transition from vegetative growth to reproductive growth in Brassica rapa. Bolting before plants reach the harvesting stage is a serious problem in B. rapa vegetable crop cultivation. The genetic dissection of flowering time is important for breeding of premature bolting-resistant B. rapa crops. Using a recombinant inbred line (RIL) population, we twice detected two major quantitative trait loci (QTLs) for flowering time in two different growing seasons that were located on chromosomes A02 and A07, respectively. We hypothesized that an orthologue of the Arabidopsis thaliana FLOWERING LOCUS T (FT) gene, named as BrFT2, was the candidate gene underlying the QTL localized to A07. A transposon insertion in the second intron of BrFT2 was detected in one of the parental lines, which was predicted to generate a loss-of-function allele. Transcription analysis revealed that the BrFT2 transcript was not present in the parental line that harbored the mutated allele. RILs carrying only the mutated BrFT2 allele showed delayed flowering regardless of growing seasons when compared to RILs carrying the wild-type BrFT2 allele. These data suggest that BrFT2 is involved in flowering time regulation in controlling flowering time in B. rapa.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.