Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 498741
Title ORCHIDEE-CROP (v0), a new process-based agro-land surface model : Model description and evaluation over Europe
Author(s) Wu, X.; Vuichard, N.; Ciais, P.; Moors, E.J.; Jans, W.; Elbers, J.
Source Geoscientific Model Development 9 (2016)2. - ISSN 1991-959X - p. 857 - 873.
Department(s) Alterra - Climate change and adaptive land and water management
Publication type Refereed Article in a scientific journal
Publication year 2016

The response of crops to changing climate and atmospheric CO2 concentration ([CO2]) could have large effects on food production, and impact carbon, water, and energy fluxes, causing feedbacks to the climate. To simulate the response of temperate crops to changing climate and [CO2], which accounts for the specific phenology of crops mediated by management practice, we describe here the development of a process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module, and a very simple parameterization of nitrogen fertilization, into the land surface model (LSM) ORCHIDEEv196, in order to simulate biophysical and biochemical interactions in croplands, as well as plant productivity and harvested yield. The model is applicable for a range of temperate crops, but is tested here using maize and winter wheat, with the phenological parameterizations of two European varieties originating from the STICS agronomical model. We evaluate the ORCHIDEE-CROP (v0) model against eddy covariance and biometric measurements at seven winter wheat and maize sites in Europe. The specific ecosystem variables used in the evaluation are CO2 fluxes (net ecosystem exchange, NEE), latent heat, and sensible heat fluxes. Additional measurements of leaf area index (LAI) and aboveground biomass and yield are used as well. Evaluation results revealed that ORCHIDEE-CROP (v0) reproduced the observed timing of crop development stages and the amplitude of the LAI changes. This is in contrast to ORCHIDEEv196 where, by default, crops have the same phenology as grass. A halving of the root mean square error for LAI from 2.38 ± 0.77 to 1.08 ± 0.34 m2 m-2 was obtained when ORCHIDEEv196 and ORCHIDEE-CROP (v0) were compared across the seven study sites. Improved crop phenology and carbon allocation led to a good match between modeled and observed aboveground biomass (with a normalized root mean squared error (NRMSE) of 11.0-54.2 %), crop yield, daily carbon and energy fluxes (with a NRMSE of ∼9.0-20.1 and ∼9.4-22.3 % for NEE), and sensible and latent heat fluxes. The simulated yields for winter wheat and maize from ORCHIDEE-CROP (v0) showed a good match with the simulated results from STICS for three sites with available crop yield observations, where the average NRMSE was ∼8.8 %. The model data misfit for energy fluxes were within the uncertainties of the measurements, which themselves showed an incomplete energy balance closure within the range 80.6-86.3 %. The remaining discrepancies between the modeled and observed LAI and other variables at specific sites were partly attributable to unrealistic representations of management events by the model. ORCHIDEE-CROP (v0) has the ability to capture the spatial gradients of carbon and energy-related variables, such as gross primary productivity, NEE, and sensible and latent heat fluxes across the sites in Europe, which is an important requirement for future spatially explicit simulations. Further improvement of the model, with an explicit parameterization of nutritional dynamics and management, is expected to improve its predictive ability to simulate croplands in an Earth system model.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.