Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 498851
Title Detection of ochratoxin A in beer samples with a label-free monolithically integrated optoelectronic biosensor
Author(s) Pagkali, Varvara; Petrou, Panagiota S.; Salapatas, Alexandros; Makarona, Eleni; Peters, Jeroen; Haasnoot, Willem; Jobst, Gerhard; Economou, Anastasios; Misiakos, Konstantinos; Raptis, Ioannis; Kakabakos, Sotirios E.
Source Journal of Hazardous Materials 323 (2017)Part A. - ISSN 0304-3894 - p. 75 - 83.
DOI https://doi.org/10.1016/j.jhazmat.2016.03.019
Department(s) RIKILT - BU Toxicology Bioassays & Novel Foods
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2017
Keyword(s) Beer - Label-free detection - Monolithically integrated Mach-Zehnder interferometers - Ochratoxin A
Abstract

An optical biosensor for label-free detection of ochratoxin A (OTA) in beer samples is presented. The biosensor consists of an array of ten Mach-Zehnder interferometers (MZIs) monolithically integrated along with their respective broad-band silicon light sources on the same Si chip (37mm2). The chip was transformed to biosensor by functionalizing the MZIs sensing arms with an OTA-ovalbumin conjugate. OTA determination was performed by pumping over the chip mixtures of calibrators or samples with anti-OTA antibody following a competitive immunoassay format. An external miniaturized spectrometer was employed to continuously record the transmission spectra of each interferometer. Spectral shifts obtained due to immunoreaction were transformed to phase shifts through Discrete Fourier Transform. The assay had a detection limit of 2.0ng/ml and a dynamic range 4.0-100ng/ml in beer samples, recoveries ranging from 90.6 to 116%, and intra- and inter-assay coefficients of variation of 9% and 14%, respectively. The results obtained with the sensor using OTA-spiked beer samples spiked were in good agreement with those obtained by an ELISA developed using the same antibody. The good analytical performance of the biosensor and the small size of the proposed chip provide for the development of a portable instrument for point-of-need determinations.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.