Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 498991
Title A mechanistic view of drying suspension droplets
Author(s) Kooij, Hanne M. Van Der; De Kerkhof, Gea T. Van; Sprakel, Joris
Source Soft Matter 12 (2016)11. - ISSN 1744-683X - p. 2858 - 2867.
DOI https://doi.org/10.1039/c5sm02406d
Department(s) Physical Chemistry and Soft Matter
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract

When a dispersion droplet dries, a rich variety of spatial and temporal heterogeneities emerge. Controlling these phenomena is essential for many applications yet requires a thorough understanding of the underlying mechanisms. Although the process of film formation from initially dispersed polymer particles is well documented and is known to involve three main stages - evaporation, particle deformation and coalescence - it is impossible to fully disentangle the effects of particle deformation and coalescence, as these stages are closely linked. We circumvent this problem by studying suspensions of colloidal rubber particles that are incapable of coalescing. Varying the crosslink density allows us to tune the particle deformability in a controlled manner. We develop a theoretical framework of the main regimes and stresses in drying droplets of these suspensions, and validate this framework experimentally. Specifically, we show that changing the particle modulus by less than an order of magnitude can completely alter the stress development and resulting instabilities. Scanning electron microscopy reveals that particle deformability is a key factor in stress mitigation. Our model is the suspension equivalent of the widely used Routh-Russel model for film formation in drying dispersions, with additional focus on lateral nonuniformities such as cracking and wrinkling inherent to the droplet geometry, thus adding a new dimension to the conventional view of particle deformation.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.