Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 499421
Title Adapting greenhouse climate for enhanced biocontrol and better performance of plant protection products
Author(s) Vänninen, I.; Meijer, R.J.M.
Source BioGreenhouse (Fact sheet BioGreenhouse 12) - 2 p.
Department(s) WUR GTB Algemeen
Publication type Brochure
Publication year 2016
Keyword(s) horticulture - greenhouse horticulture - plant protection - natural enemies - pesticides - environmental temperature - humidity - lighting - carbon dioxide - plant health - organic farming - tuinbouw - glastuinbouw - gewasbescherming - natuurlijke vijanden - pesticiden - omgevingstemperatuur - vochtigheid - verlichting - kooldioxide - plantgezondheid - biologische landbouw
Categories Horticulture / Plant and Crop Protection (General) / Greenhouse Technology
Abstract In greenhouse crop production, climatic parameters are often manipulated to optimize plant growth. Greenhouse climate has profound influences also on pests and their natural enemies used for biocontrol. The responses of arthropod pests, plant disease agents and natural enemies to constant temperatures and humidity are relatively well known, but many pertinent questions remain unsolved for pest and natural enemy biology and behaviour in conditions created by the newest greenhouse climate technologies and approaches. Greenhouse climate can be optimized also to benefit natural enemies and to work against pests and plant diseases, but we know less how to make this happen than we know how to manipulate plant growth through temperature, humidity, CO2 and light conditions.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.