Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 499592
Title Phase field simulations of ice crystal growth in sugar solutions
Author(s) Sman, R.G.M. Van Der
Source International Journal of Heat and Mass Transfer 95 (2016). - ISSN 0017-9310 - p. 153 - 161.
DOI http://dx.doi.org/10.1016/j.ijheatmasstransfer.2015.11.089
Department(s) FBR Food Technology
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Computer simulation - Ice crystal growth - Phase field method - Sugar solution
Abstract

We present the first model ever, that describes explicitly ice crystal growth in a sugar solution during freezing. This 2-D model uses the phase field method, supplemented with realistic, and predictive theories on the thermodynamics and (diffusion) kinetics of this food system. We have to make use of a novel type of phase field to obtain realistic, micron-sized ice crystals, and exclusion of sugar from the crystalline phase. Via simulation of a single ice crystal, we identify important time scales governing the growth. These times scales are also important for the coarsening of the ice morphology in freezing systems with multiple ice crystals. These simulations show that the average ice crystal size is governed by the freezing rate via a power law, similar to an empirical relation from literatures, which is deduced from experiment. The presented model is viewed as a good basis for even more realistic simulations of crystal growth in food.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.