Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 499595
Title Preparation of polylactide microcapsules at a high throughput with a packed-bed premix emulsification system
Author(s) Sawalha, Hassan; Sahin, Sami; Schroën, Karin
Source Journal of Applied Polymer Science 133 (2016)24. - ISSN 0021-8995
DOI https://doi.org/10.1002/app.43536
Department(s) Food Process Engineering
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) biomedical applications - colloids - drug-delivery systems - membranes
Abstract

Core-shell polymer microcapsules are well known for their biomedical applications as drug carriers when they are filled with drugs and gas-filled microcapsules that can be used as ultrasound contrast agents. The properties of microcapsules are strongly dependent on their size (distribution); therefore, equipment that allows the preparation of small and well-defined microcapsules is of great practical relevance. In this study, we made polylactide microcapsules with a packed-bed premix emulsification system that previously gave good results for regular emulsions. Here, we tested it for applicability to a system in which droplets shrank and solidified to obtain capsules. The packed-bed column was loaded with glass beads of different sizes (30-90 μm) at various bed heights (2-20 mm), and coarse emulsions consisting of the polymer, a solvent, and a nonsolvent were pushed repeatedly through this system at selected applied pressures (1-4 bar). The obtained transmembrane fluxes (100-1000 m3 m-2 h-1) were much higher than those recorded for other membrane emulsification techniques. The average size of the obtained microcapsules ranged between 2 and 8 μm, with an average span of about 1; interestingly, the capsules were 2-10 times smaller than the interstitial voids of the beds. The droplets were larger when we used thicker beds and larger glass beads, and these effect correlated with the pore Reynolds number (Rep). Two breakup mechanisms were identified: spontaneous droplet snap-off dominated the system at low Reps, and localized shear forces dominated the system at higher Rep.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.