Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 499681
Title Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation
Author(s) Khiewwijit, R.; Temmink, B.G.; Rijnaarts, H.H.M.; Keesman, K.J.
DOI http://dx.doi.org/10.17026/dans-zcf-j46d
Department(s) Sub-department of Environmental Technology
WIMEK
Wageningen Institute for Environment and Climate Research
VLAG
Biobased Chemistry and Technology
Publication type Dataset
Publication year 2015
Keyword(s) Volatile fatty acids - Bioflocculation - Anaerobic fermentation - Alkaline pH - Wastewater treatment
Toponym The Netherlands
Abstract This study explored the potential of volatile fatty acids (VFA) production from sewage by a combined high-loaded membrane bioreactor and sequencing batch fermenter. VFA production was optimized with respect to SRT and alkaline pH (pH 8–10). Application of pH shock to a value of 9 at the start of a sequencing batch cycle, followed by a pH uncontrolled phase for 7 days, gave the highest VFA yield of 440 mg VFA-COD/g VSS. This yield was much higher than at fermentation without pH control or at a constant pH between 8 and 10. The high yield in the pH 9 shocked system could be explained by (1) a reduction of methanogenic activity, or (2) a high degree of solids degradation or (3) an enhanced protein hydrolysis and fermentation. VFA production can be further optimized by fine-tuning pH level and longer operation, possibly allowing enrichment of alkalophilic and alkali-tolerant fermenting microorganisms.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.