Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 500735
Title High-fat dietary restriction in mice induces substrate efficiency and improves metabolic health [Mus musculus]
Author(s) Schothorst, E.M. van
Department(s) Human and Animal Physiology
Publication type Dataset
Publication year 2011
Keyword(s) human nutrition and health - GSE27213 - PRJNA137517
Abstract Metis-ID:181574 (Submitter supplied) High energy intake and, specifically, high dietary fat intake challenges the mammalian metabolism and correlates with many metabolic disorders, such as obesity and diabetes. Dietary restriction (DR) is, on the other hand, known to prevent the development of metabolic disorders. The current Western diets are highly enriched in fat and it is as yet unclear whether DR on a certain high-fat (HF) diet elicits similar beneficial effects on health. Here, we report that HF-DR improves metabolic health of mice, compared to mice receiving the same diet on an ad-libitum basis (HF-AL). Already after five weeks of restriction the serum levels of cholesterol and leptin were significantly decreased in HF-DR mice, while their glucose sensitivity and serum adiponectin levels were increased. The body weight and measured serum parameters remained stable in the following 7 weeks of restriction, implying metabolic adaptation. To understand the molecular events associated with this adaptation, we analysed gene expression in white adipose tissue (WAT) with whole genome microarrays. HF-DR strongly influenced gene expression in WAT; in total 8,643 genes were differentially expressed between both groups of mice, with a major role for genes involved in lipid metabolism and mitochondrial functioning. This was confirmed by qRT-PCR and substantiated by an increase in mitochondrial density in WAT of HF-DR mice. These results provide new insights in the metabolic flexibility of dietary restricted animals and suggest the development of substrate efficiency. Limiting food intake by decreasing portion sizes, while maintaining energy sufficiency, may similarly benefit metabolic health in humans.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.