Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 501437
Title Nanoscale force sensors to study supramolecular systems
Author(s) Cingil, E.H.
Source University. Promotor(en): Martien Cohen Stuart, co-promotor(en): Joris Sprakel. - Wageningen : Wageningen University - ISBN 9789462576971 - 136 p.
Department(s) Physical Chemistry and Soft Matter
VLAG
Publication type Dissertation, internally prepared
Publication year 2016
Keyword(s) sensors - supramolecular chemistry - molecules - biopolymers - polymers - methodology - rheology - supramoleculaire chemie - moleculen - biopolymeren - polymeren - methodologie - reologie
Categories Physical Chemistry
Abstract

Supramolecular systems are solutions, suspensions or solids, formed by physical and non-covalent interactions. These weak and dynamic bonds drive molecular self-assembly in nature, leading to formation of complex ordered structures in high precision. Understanding self-assembly and co-assembly is crucial to unravel and mimic many processes occurring in nature. However, the challenge cannot be easily addressed especially in biological systems as it involves many dynamic interactions which may cooperatively, noncooperatively or competitively generate a complex manifold of interaction pathways. In this thesis, we employed two techniques to understand these complex interactions in various supramolecular systems at the nanoscale 1) multiple particle tracking microrheology to study thermoreversible assembly of triple helices in a collagen-inspired recombinant polypeptide in the form of a triblock copolymer gel former; and 2) polyfluorene-based conjugated polyelctrolyte mechosensors to monitor electrostatic co-assembly dynamics of (i) a recombinant diblock copolypeptide which encapsulates the conjugated polyelectrolyte like a protein capsid and (ii) various synthetic diblock copolymers which forms complex coacervate micelles; and finally the orthogonal self-assembly dynamics of (iii) a recombinant viral coat protein which mimics natural rod-like viruses. These novel polymeric mechanosensors work as versatile, non-invasive tools to detect even low degrees of analyte binding or complex formation due to the stress applied on their conjugated backbone. This mechanical stress causes the polymeric backbone to stretch which can be detected by a shift in its fluorescence spectra.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.