Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 501832
Title Early differences in metabolic flexibility between obesity-resistant and obesity-prone mice
Author(s) Bardova, K.; Horakova, O.; Janovska, P.; Hansikova, Jana; Kus, V.; Schothorst, E.M. van; Hoevenaars, Femke; Uil, Melissa; Hensler, M.; Keijer, J.; Kopecky, J.
Source Biochimie 124 (2016). - ISSN 0300-9084 - p. 163 - 170.
DOI https://doi.org/10.1016/j.biochi.2015.11.014
Department(s) Human and Animal Physiology
VLAG
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Metabolic flexibility - obesity-resistance - obesity-prone
Abstract Decreased metabolic flexibility, i.e. a compromised ability to adjust fuel oxidation to fuel availability supports development of adverse consequences of obesity. The aims of this study were (i) to learn whether obesity-resistant A/J and obesity-prone C57BL/6J mice differ in their metabolic flexibility right after weaning; and (ii) to characterize possible differences in control of glucose homeostasis in these animals using glucose tolerance tests (GTT). A/J and C57BL/6J mice of both genders were maintained at 20 °C and weaned to standard low-fat diet at 30 days of age. During the first day after weaning, using several separate animal cohorts, (i) GTT was performed using 1 or 3 mg glucose/g body weight (BW), while glucose was administered either orally (OGTT) or intraperitoneally (IPGTT) at 20 °C; and (ii) indirect calorimetry (INCA) was performed, either in a combination with oral gavage of 1 or 7.5 mg glucose/g BW, or during a fasting/re-feeding transition. INCA was conducted either at 20 °C or 34 °C. Results of both OGTT and IPGTT using 1 mg glucose/g BW at 20 °C, and INCA using 7.5 mg glucose/g BW at 34 °C, indicated higher glucose tolerance and higher metabolic flexibility to glucose, respectively, and lower fasting glycemia in A/J mice as compared with C57BL/6J mice. Thus, control of whole body glucose metabolism between A/J and C57BL/6J mice represents a phenotypic feature differentiating between the strains right after weaning.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.