Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 501838
Title Design of climate respiration chambers, adjustable to the metabolic mass of subjects
Author(s) Heetkamp, M.J.W.; Alferink, S.J.J.; Zandstra, T.; Hendriks, P.; Brand, H. van den; Gerrits, W.J.J.
Source In: Indirect Calorimetry / Gerrits, Walter, Labussière, Etienne, Wageningen : Wageningen Academic Publishers - ISBN 9789086862610 - p. 35 - 56.
DOI https://doi.org/10.3920/978-90-8686-261-0_2
Department(s) Adaptation Physiology
Animal Nutrition
WIAS
Publication type Peer reviewed book chapter
Publication year 2015
Abstract Open-circuit respiration chambers can be used to measure gas exchange and to calculate heat production (Q) of humans and animals. When studying short-term changes in Q, the size of the respiration chamber in relation to the subject of study is a point of concern. The washout time of a chamber, defined as the proportion of the chamber size to the rate of ventilation, needs to be minimised for accurate measurement of short term changes in Q. To date, most respiration chambers have a fixed size, limiting their use for different species, sizes and number of subjects, thus hampering studying the short term dynamics of Q. This chapter presents various approaches to the design, construction and testing of respiration chambers, adjustable to the metabolic mass inside. As investment costs for constructing respiration chambers are high, flexibility in the use of chambers can contribute substantially to an efficient use of resources. Furthermore, an outline is given to sensor criteria and calibration and finally, the validation of a whole indirect-calorimetric system is described. Air leak tolerance is defined and attention is paid to caretaking of animals, excreta collection and animal and personnel welfare and safety. Respiration facilities, recently constructed at Wageningen University are presented as an example. Briefly, four 45 m2 climate chambers can be used, e.g. for heat or cold stress experiments, to incubate eggs or as a hygiene barrier. Within each chamber, one or two smaller airtight, size adaptable respiration rooms, can be built in where ambient temperature, humidity and ventilation rate can be controlled independently. In each respiration room a wide range of ventilation flow rates can be accomplished and both hypobaric and hyperbaric air pressure control can be established, allowing energy metabolism experiments with specific pathogen free animals (hyperbaric) or trials with infectious agents (hypobaric).
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.