Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 501903
Title Creating long-term weather data from thin air for crop simulation modeling
Author(s) Wart, Justin Van; Grassini, Patricio; Yang, Haishun; Claessens, Lieven; Jarvis, Andrew; Cassman, Kenneth G.
Source Agricultural and Forest Meteorology 209-210 (2015). - ISSN 0168-1923 - p. 49 - 58.
Department(s) Soil Geography and Landscape
Publication type Refereed Article in a scientific journal
Publication year 2015
Abstract Simulating crop yield and yield variability requires long-term, high-quality daily weather data, including solar radiation, maximum (Tmax) and minimum temperature (Tmin), and precipitation. In many regions, however, daily weather data of sufficient quality and duration are not available. To overcome this limitation, we evaluated a new method to create long-term weather series based on a few years of observed daily temperature data (hereafter called propagated data). The propagated data are comprised of uncorrected gridded solar radiation from the Prediction of Worldwide Energy Resource dataset from the National Aeronautics and Space Administration (NASA–POWER), rainfall from the Tropical Rainfall Measuring Mission (TRMM) dataset, and location-specific calibration of NASA–POWER Tmax and Tmin using a limited amount of observed daily temperature data. The distributions of simulated yields of maize, rice, or wheat with propagated data were compared with simulated yields using observed weather data at 18 sites in North and South America, Europe, Africa, and Asia. Other sources of weather data typically used in crop modeling for locations without long-term observed weather data were also included in the comparison: (i) uncorrected NASA–POWER weather data and (ii) generated weather data using the MarkSim weather generator. Results indicated good agreement between yields simulated with propagated weather data and yields simulated using observed weather data. For example, the distribution of simulated yields using propagated data was within 10% of the simulated yields using observed data at 78% of locations and degree of yield stability (quantified by coefficient of variation) was very similar at 89% of locations. In contrast, simulated yields based entirely on uncorrected NASA–POWER data or generated weather data using MarkSim were within 10% of yields simulated using observed data in only 44 and 33% of cases, respectively, and the bias was not consistent across locations and crops. We conclude that, for most locations, 3 years of observed daily Tmax and Tmin data would allow creation of a robust weather data set for simulation of long-term mean yield and yield stability of major cereal crops.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.