Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 502357
Title Fish larvae exploit edge vortices along their dorsal and ventral fin folds to propel themselves
Author(s) Li, G.; Müller, U.K.; Leeuwen, J.L. van; Liu, Hao
Source Journal of the Royal Society, Interface 13 (2016). - ISSN 1742-5689 - 12 p.
Department(s) Experimental Zoology
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract Larvae of bony fish swim in the intermediate Reynolds number (Re) regime,
using body- and caudal-fin undulation to propel themselves. They share a
median fin fold that transforms into separate median fins as they grow into
juveniles. The fin fold was suggested to be an adaption for locomotion in the
intermediate Reynolds regime, but its fluid-dynamic role is still enigmatic.
Using three-dimensional fluid-dynamic computations,we quantified the swimming trajectory frombody-shape changes during cyclic swimming of larval fish. We predicted unsteady vortices around the upper and lower edges of the fin
fold, and identified similar vortices around real larvaewith particle image velocimetry. We show that thrust contributions on the body peak adjacent to the
upper and lower edges of the fin fold where large left–right pressure differences
occur in concert with the periodical generation and shedding of edge vortices.
The fin fold enhances effective flow separation and drag-based thrust. Along
the body, net thrust is generated in multiple zones posterior to the centre of
mass. Counterfactual simulations exploring the effect of having a fin fold
across a range of Reynolds numbers show that the fin fold helps larvae achieve
high swimming speeds, yet requires high power. We conclude that propulsion
in larval fish partly relies on unsteady high-intensity vortices along the upper
and lower edges of the fin fold, providing a functional explanation for the
omnipresence of the fin fold in bony-fish larvae.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.