Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 503464
Title SnTox1, a Parastagonospora nodorum necrotrophic effector, is a dual-function protein that facilitates infection while protecting from wheat-produced chitinases
Author(s) Liu, Zhaohui; Gao, Yuanyuan; Kim, Yong Min; Faris, Justin D.; Shelver, Weilin L.; Wit, Pierre J.G.M. de; Xu, Steven S.; Friesen, Timothy L.
Source New Phytologist 211 (2016)3. - ISSN 0028-646X - p. 1052 - 1064.
DOI http://dx.doi.org/10.1111/nph.13959
Department(s) Laboratory of Phytopathology
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Parastagonosopora nodorum - Chitin - Host-selective toxin - Necrotroph - Necrotrophic effector - Programmed cell death (PCD) - Wheat (Triticum aestivum) chitinases
Abstract

SnTox1 induces programmed cell death and the up-regulation of pathogenesis-related genes including chitinases. Additionally, SnTox1 has structural homology to several plant chitin-binding proteins. Therefore, we evaluated SnTox1 for chitin binding and localization. We transformed an avirulent strain of Parastagonospora nodorum as well as three nonpathogens of wheat (Triticum aestivum), including a necrotrophic pathogen of barley, a hemibiotrophic pathogen of sugar beet and a saprotroph, to evaluate the role of SnTox1 in infection and in protection from wheat chitinases. SnTox1 bound chitin and an SnTox1-green fluorescent fusion protein localized to the mycelial cell wall. Purified SnTox1 induced necrosis in the absence of the pathogen when sprayed on the leaf surface and appeared to remain on the leaf surface while inducing both epidermal and mesophyll cell death. SnTox1 protected the different fungi from chitinase degradation. SnTox1 was sufficient to change the host range of a necrotrophic pathogen but not a hemibiotroph or saprotroph. Collectively, this work shows that SnTox1 probably interacts with a receptor on the outside of the cell to induce cell death to acquire nutrients, but SnTox1 accomplishes a second role in that it protects against one aspect of the defense response, namely the effects of wheat chitinases.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.