Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 503528
Title Performance of the SUBSTOR-potato model across contrasting growing conditions
Author(s) Raymundo, Rubí; Asseng, Senthold; Prassad, Rishi; Wolf, Joost
Source Field Crops Research 202 (2017). - ISSN 0378-4290 - p. 57 - 76.
DOI http://dx.doi.org/10.1016/j.fcr.2016.04.012
Department(s) Plant Production Systems
Publication type Refereed Article in a scientific journal
Publication year 2017
Keyword(s) CO - Crop modeling - High temperature - Model performance - Potato - SUBSTOR-potato
Abstract

Crop models are essential tools in climate change impact assessments, but they often lack comprehensive field testing. In this study, we tested the SUBSTOR-potato model with 87 field experiments, including 204 treatments from 19 countries. The field experiments varied in potato species and cultivars, N fertilizer application, water supply, sowing dates, soil types, temperature environments, and atmospheric CO2 concentrations, and included open top chamber and Free-Air-CO2-Enrichment (FACE) experiments. Tuber yields were generally well simulated with the SUBSTOR-potato model across a wide range of current growing conditions and for diverse potato species and cultivars, including Solanum tuberosum, Solanum andigenum, Solanum juzepczukii species, as well as modern, traditional, early, medium, and late maturity-type cultivars, with a relative RMSE of 37.2% for tuber dry weight and 21.4% for tuber fresh weight. Cultivars 'Desiree' and 'Atlantic' were grown in experiments across the globe and well simulated using consistent cultivar parameters. However, the model underestimated the impact of elevated atmospheric CO2 concentrations and poorly simulated high temperature effects on crop growth. Other simulated crop variables, including leaf area, stem weight, crop N, and soil water, differed frequently from measurements; some of these variables had significant large measurement errors. The SUBSTOR-potato model was shown to be suitable to simulate tuber growth and yields over a wide range of current growing conditions and crop management practices across many geographic regions. However, before the model can be used effectively in climate change impact assessments, it requires improved model routines to capture the impacts of elevated atmospheric CO2 and high temperatures on crop growth.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.