Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 503800
Title Searching for balance : stability and equilibria of food webs
Author(s) Altena, C. van
Source University. Promotor(en): Peter de Ruiter; J.A.P. Heesterbeek; Wolf Mooij, co-promotor(en): Lia Hemerik. - Wageningen : Wageningen University - ISBN 9789462576827 - 130 p.
Department(s) Biometris (WU MAT)
PE&RC
Publication type Dissertation, internally prepared
Publication year 2016
Keyword(s) food webs - models - interactions - ecology - biocoenosis - ecological balance - voedselwebben - modellen - interacties - ecologie - biocenose - ecologisch evenwicht
Categories Mathematical Models, Simulation Models / Ecology (General)
Abstract

Abstract

How complexity of food webs relates to stability has been a subject of many studies. Often,

unweighted connectance is used to express complexity. Unweighted connectance is

measured as the proportion of realized links in the network. Weighted connectance, on the

other hand, takes link weights (fluxes or feeding rates) into account and captures the shape

of the flux distribution. Here, we used weighted connectance to revisit the relation between

complexity and stability. We used 15 real soil food webs and determined the feeding rates

and the interaction strength matrices. We calculated both versions of connectance, and

related these structural properties to food web stability. We also determined the skewness

of both flux and interaction strength distributions with the Gini coefficient. We found no

relation between unweighted connectance and food web stability, but weighted connectance

was positively correlated with stability. This finding challenges the notion that complexity

may constrain stability, and supports the ‘complexity begets stability’ notion. The positive

correlation between weighted connectance and stability implies that the more evenly flux

rates were distributed over links, the more stable the webs were. This was confirmed by the

Gini coefficients of both fluxes and interaction strengths. However, the most even

distributions of this dataset still were strongly skewed towards small fluxes or weak

interaction strengths. Thus, incorporating these distribution with many weak links via

weighted instead of unweighted food web measures can shed new light on classical

theories

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.