Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 503850
Title Identification of critical concentrations determining foam ability and stability of β-lactoglobulin
Author(s) Lech, Frederik J.; Delahaije, Roy J.B.M.; Meinders, Marcel B.J.; Gruppen, Harry; Wierenga, Peter A.
Source Food Hydrocolloids 57 (2016). - ISSN 0268-005X - p. 46 - 54.
DOI http://dx.doi.org/10.1016/j.foodhyd.2016.01.005
Department(s) Food Chemistry Group
VLAG
FBR Food Technology
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Adsorbed amount - Interfacial properties - Protein structure - Thin liquid films - ζ-potential
Abstract

To understand the properties of protein stabilized foam, quantitative parameters, such as the concentration dependence of the foam properties need to be determined. Recently, a concept was proposed that predicts the emulsifying ability (i.e. the droplet size in emulsions) based on different parameters, including the protein concentration. The aim of the present study is to investigate whether a similar concept can be applied to describe the foam ability and stability of protein stabilized foams. To achieve this, the foam, thin film and molecular properties of β-lactoglobulin (BLG) were determined at different concentrations and different pH values (pH 3-7). At each pH, a certain critical concentration for foam ability CFA, could be identified above which the set foam volume was reached, while below that value the set volume was not reached. Furthermore, for all pH another critical concentration (Ccrr32) at C > CFA was identified as the point where the bubble radius (measured at the end of foam formation) reached a minimal value. The foam ability increased with increasing pH (pH 3-7). The difference in foam ability as a function of pH was reflected in the adsorption rate (slope Π/t0.5 curve) of BLG. The foam stability increased with increasing concentration at each pH value but even in the protein rich regime where C > Ccrr32 different foam stabilities were observed, which were highest at pH 7.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.