Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 503854
Title Simulating the net ecosystem CO2 exchange and its components over winter wheat cultivation sites across a large climate gradient in Europe using the ORCHIDEE-STICS generic model
Author(s) Vuichard, Nicolas; Ciais, Philippe; Viovy, Nicolas; Li, Longhui; Ceschia, Eric; Wattenbach, Martin; Bernhofer, Christian; Emmel, Carmen; Grünwald, Thomas; Jans, Wilma; Loubet, Benjamin; Wu, Xiuchen
Source Agriculture, Ecosystems and Environment 226 (2016). - ISSN 0167-8809 - p. 1 - 17.
DOI http://dx.doi.org/10.1016/j.agee.2016.04.017
Department(s) Alterra - Climate change and adaptive land and water management
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Carbon dioxide fluxes - Croplands - Global terrestrial ecosystem model
Abstract

Over the last decade, efforts have been carried on to develop and evaluate versions of global terrestrial ecosystem models (GTEM) in which crop specificities are represented. The goal of this study is to evaluate the ability of the ORCHIDEE-STICS (Organising Carbon and Hydrology In Dynamic EcosystEms-Simulateur mulTIdisciplinaire pour les Cultures Standard) GTEM in simulating the observed seasonal variations and annual budgets of net ecosystem exchange (NEE), gross primary production (GPP) and total ecosystem respiration (TER) fluxes over seven wheat sites spanning a large climate gradient in Europe. Overall, the seasonal variations of GPP are well represented by the model, with 5 sites out of 7 exhibiting a correlation coefficient (R) value higher than 0.9 and a normalized standard deviation (NSTD) between 0.8 and 1.2. In comparison, the model performances for catching the seasonal variations of TER are lower, especially in terms of NSTD. Regarding the annual budgets, mean simulated deviations averaged over all sites do not exceed 10% and 15% of the observed annual mean budget, for GPP and TER, respectively. For NEE, the model capacity at estimating annual budgets is low, its mean deviation corresponding to ~35% of the observed mean value. This clearly shows that more accurate model estimates of GPP and especially TER are required for estimating NEE annual budgets. In this respect, past land-use and land-management changes are probably the most crucial processes to add, for getting soil carbon disequilibrium and more accurate NEE annual budgets. From a sensitivity analysis of the modelled fluxes to three management practices (plant variety, sowing date and fertilization intensity), we found that the fertilization is the most sensitive practice impacting the model performances of any flux, both in terms of seasonal variations and annual budgets.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.