Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 504217
Title The two Rasamsonia emersonii α-glucuronidases, ReGH67 and ReGH115, show a different mode-of-action towards glucuronoxylan and glucuronoxylo-oligosaccharides
Author(s) Murciano Martínez, Patricia; Appeldoorn, Maaike M.; Gruppen, Harry; Kabel, Mirjam A.
Source Biotechnology for Biofuels 9 (2016)1. - ISSN 1754-6834
DOI https://doi.org/10.1186/s13068-016-0519-9
Department(s) Food Chemistry Group
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Biorefinery - GH115 - GH67 - Rasamsonia emersonii - Xylo-oligosaccharides - α-Glucuronidase
Abstract

Background: The production of biofuels and biochemicals from grass-type plant biomass requires a complete utilisation of the plant cellulose and hemicellulosic xylan via enzymatic degradation to their constituent monosaccharides. Generally, physical and/or thermochemical pretreatments are performed to enable access for the subsequent added carbohydrate-degrading enzymes. Nevertheless, partly substituted xylan structures remain after pretreatment, in particular the ones substituted with (4-O-methyl-)glucuronic acids (UAme). Hence, α-glucuronidases play an important role in the degradation of UAmexylan structures facilitating the complete utilisation of plant biomass. The characterisation of α-glucuronidases is a necessity to find the right enzymes to improve degradation of recalcitrant UAmexylan structures. Results: The mode-of-action of two α-glucuronidases was demonstrated, both obtained from the fungus Rasamsonia emersonii; one belonging to the glycoside hydrolase (GH) family 67 (ReGH67) and the other to GH115 (ReGH115). Both enzymes functioned optimal at around pH 4 and 70 °C. ReGH67 was able to release UAme from UAme-substituted xylo-oligosaccharides (UAmeXOS), but only the UAme linked to the non-reducing end xylosyl residue was cleaved. In particular, in a mixture of oligosaccharides, UAmeXOS having a degree of polymerisation (DP) of two were hydrolysed to a further extent than longer UAmeXOS (DP 3-4). On the contrary, ReGH115 was able to release UAme from both polymeric UAmexylan and UAmeXOS. ReGH115 cleaved UAme from both internal and non-reducing end xylosyl residues, with the exception of UAme attached to the non-reducing end of a xylotriose oligosaccharide. Conclusion: In this research, and for the first time, we define the mode-of-action of two α-glucuronidases from two different GH families both from the ascomycete R. emersonii. To date, only four α-glucuronidases classified in GH115 are characterised. ReGH67 showed limited substrate specificity towards only UAmeXOS, cleaving UAme only when attached to the non-reducing end xylosyl residue. ReGH115 was much less substrate specific compared to ReGH67, because UAme was released from both polymeric UAmexylan and UAmeXOS, from both internal and non-reducing end xylosyl residues. The characterisation of the mode-of-action of these two α-glucuronidases helps understand how R. emersonii attacks UAmexylan in plant biomass and the knowledge presented is valuable to improve enzyme cocktails for biorefinery applications.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.