Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 504231
Title Modeling the biogeomorphic evolutions of coastal dunes in response to climate change
Author(s) Keijsers, J.G.S.; Groot, A.V. de; Riksen, M.J.P.M.
Source Journal of Geophysical Research: Earth Surface 121 (2016)6. - ISSN 2169-9003 - p. 1161 - 1181.
DOI http://dx.doi.org/10.1002/2015JF003815
Department(s) IMARES Onderzoeksformatie
Soil Physics and Land Management
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract Coastal dunes form in many parts of the world the first flood defense line against the sea. To study effects of climate change on coastal dune evolution, we used a cellular model of dune, beach and vegetation development (DUBEVEG). The model was calibrated and validated against field measurements of the Dutch coast, showing good performance for 10 year simulations. A sensitivity analysis showed that dune size and morphology are most sensitive to the rate of aeolian input and wave dissipation. Finally, 100-year climate-change scenarios were run to establish the impacts of sea-level rise and changes in vegetation growth rate on dune evolution. The results are in good agreement with conceptual models of dune evolution. Sea-level rise largely determines the direction of dune evolution: the rate of rising controls whether dunes are able to preserve their height or sand volume while migrating landward. The effect of changing vegetation growth rates, resulting from climate change, is most manifest in dune response to large disturbances. If vegetation is removed halfway into the simulation, vegetation growth rate determines whether a foredune will re-vegetate and recover its height. Low vegetation growth rates result in mobile dunes that lose sand. The good agreement between observations and predictions indicates that the model successfully incorporates the suite of biogeomorphic and marine processes involved in dune building.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.