Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 504639
Title Ectomycorrhizal fungal protein degradation ability predicted by soil organic nitrogen availability
Author(s) Rineau, Francois; Stas, Jelle; Nguyen, Nhu H.; Kuijper, Thomas; Carleer, Robert; Vangronsveld, Jaco; Colpaert, Jan V.; Kennedy, Peter G.
Source Applied and Environmental Microbiology 82 (2016)5. - ISSN 0099-2240 - p. 1391 - 1400.
Department(s) Chair Soil Biology and Biological Soil Quality
Publication type Refereed Article in a scientific journal
Publication year 2016

In temperate and boreal forest ecosystems, nitrogen (N) limitation of tree metabolism is alleviated by ectomycorrhizal (ECM) fungi. As forest soils age, the primary source of N in soil switches from inorganic (NH4 + and NO3 -) to organic (mostly proteins). It has been hypothesized that ECM fungi adapt to the most common N source in their environment, which implies that fungi growing in older forests would have greater protein degradation abilities. Moreover, recent results for a model ECM fungal species suggest that organic N uptake requires a glucose supply. To test the generality of these hypotheses, we screened 55 strains of 13 Suillus species with different ecological preferences for their in vitro protein degradation abilities. Suillus species preferentially occurring in mature forests, where soil contains more organic matter, had significantly higher protease activity than those from young forests with low-organic-matter soils or species indifferent to forest age. Within species, the protease activities of ecotypes from soils with high or low soil organic N content did not differ significantly, suggesting resource partitioning between mineral and organic soil layers. The secreted protease mixtures were strongly dominated by aspartic peptidases. Glucose addition had variable effects on secreted protease activity; in some species, it triggered activity, but in others, activity was repressed at high concentrations. Collectively, our results indicate that protease activity, a key ectomycorrhizal functional trait, is positively related to environmental N source availability but is also influenced by additional factors, such as carbon availability.

There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.