Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 505279
Title Effect of a diet enriched with omega-6 and omega-3 fatty acids on the pig liver transcriptome
Author(s) Szostak, Agnieszka; Ogłuszka, Magdalena; Pas, Marinus F.W. Te; Poławska, Ewa; Urbański, Paweł; Juszczuk Kubiak, Edyta; Blicharski, Tadeusz; Pareek, Chandra Shekhar; Dunkelberger, Jenelle R.; Horbańczuk, Jarosław O.; Pierzchała, Mariusz
Source Genes & Nutrition 11 (2016)1. - ISSN 1555-8932 - 17 p.
DOI http://dx.doi.org/10.1186/s12263-016-0517-4
Department(s) LR - Animal Breeding & Genomics
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract The optimal ratio of omega-6 to omega-3 polyunsaturated fatty acids (PUFAs) is important for keeping the homeostasis of biological processes and metabolism, yet the underlying biological mechanism is poorly understood. The objective of this study was to identify changes in the pig liver transcriptome induced by a diet enriched with omega-6 and omega-3 fatty acids and to characterize the biological mechanisms related to PUFA metabolism.

Polish Landrace pigs (n = 12) were fed diet enriched with linoleic acid (LA, omega-6) and α-linolenic acid (ALA, omega-3) or standard diet as a control. The fatty acid profiling was assayed in order to verify how feeding influenced the fatty acid content in the liver, and subsequently next-generation sequencing (NGS) was used to identify differentially expressed genes (DEG) between transcriptomes between dietary groups. The biological mechanisms and pathway interaction networks were identified using DAVID and Cytoscape tools. Fatty acid profile analysis indicated a higher contribution of PUFAs in the liver for LA- and ALA-enriched diet group, particularly for the omega-3 fatty acid family, but not omega-6. Next-generation sequencing identified 3565 DEG, 1484 of which were induced and 2081 were suppressed by PUFA supplementation. A low ratio of omega-6/omega-3 fatty acids resulted in the modulation of fatty acid metabolism pathways and over-representation of genes involved in energy metabolism, signal transduction, and immune response pathways.

In conclusion, a diet enriched with omega-6 and omega-3 fatty acids altered the transcriptomic profile of the pig liver and would influence animal health status.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.