Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 505324
Title Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes
Author(s) Ouzounis, T.; Heuvelink, E.; Ji, Y.; Schouten, H.J.; Visser, R.G.F.; Marcelis, L.F.M.
Source Acta Horticulturae 1134 (2016). - ISSN 0567-7572 - p. 251 - 258.
DOI https://doi.org/10.17660/ActaHortic.2016.1134.34
Department(s) Horticulture and Product Physiology Group
PE&RC
WUR PB Biodiversiteit en Genetische Variatie
EPS
Laboratory of Plant Breeding
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Chlorophyll - Flavonol - Greenhouse horticulture - Light emitting diodes - Photomorphogenesis
Abstract

A collection of nine tomato genotypes was chosen based on their diversity, phylogeny, availability of genome information, and agronomic traits. The objective of the study was to characterize the effect of red and blue LED (light-emitting diode) lighting on physiological, morphological, developmental, and chemical parameters. Two LED light treatments were imposed: (1): 100% red and (2): 88% red/12% blue (peak emission at 662 and 456 nm for red and blue light, respectively). The combination of blue and red LED lighting increased total dry matter in seven of the nine genotypes compared to red. Upward or downward leaf curling was observed in all genotypes in the 100% red treatment. Stomatal conductance was not affected much by additional blue light, but blue light increased chlorophyll and flavonol contents in three genotypes. The exposure of tomato plants to a combination of red and blue LEDs alleviated leaf morphological abnormalities and enhanced plant biomass, and variably affected stomatal conductance and secondary metabolism compared to red light alone.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.