Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 505332
Title Reversible polypeptide hydrogels from asymmetric telechelics with temperature-dependent and Ni2+-dependent connectors
Author(s) Pham, Thao T.H.; Gucht, Jasper van der; Kleijn, Mieke; Cohen Stuart, Martien A.
Source Soft Matter 12 (2016)22. - ISSN 1744-683X - p. 4979 - 4984.
DOI https://doi.org/10.1039/c6sm00218h
Department(s) Physical Chemistry and Soft Matter
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract

An asymmetric ('hybrid') triblock polypeptide TR4H with two different, orthogonally self-assembling end blocks has been constructed by conjugating a long (37 kDa) random coil block (R4) with a triple helix former T = (Pro-Gly-Pro)9 at the N terminus, and a histidine hexamer ('Histag', H) at the C terminus. This molecule can form trimers at room temperature by assembly of the T blocks, which can in turn assemble upon addition of Ni2+, by association of Ni complexes involving the H block. This results in reversible hydrogels with dual responsiveness. We have studied mechanical properties of these gels, and compared them to gels formed by the symmetric triblock TR8T which is equivalent to a dimer of TR4H, but can only form triple helix-based networks. We find that there is an optimum mole ratio for Ni2+ with respect to the polypeptide of about 1; gels are weaker at both lower and higher Ni2+ dose. At the optimum dose, the high-frequency storage modulus is in between the value expected for nickel-induced dimerization and trimerization of the H blocks. We also find that the gels relax on time scales of about 50 s, which is two orders of magnitude faster than for TR8T gels, implying that relaxation is dominated by the dynamics of the Ni2+ complex.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.