Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 505790
Title Influence of canopy seasonal changes on turbulence parameterization within the roughness sublayer over an orchard canopy
Author(s) Shapkalijevski, M.; Moene, A.F.; Ouwersloot, Huug; Patton, E.G.; Vilà-Guerau De Arellano, J.
Source Journal of Applied Meteorology and Climatology 55 (2016). - ISSN 1558-8424 - p. 1391 - 1407.
Department(s) Meteorology and Air Quality
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract In this observational study, the role of tree phenology on the atmospheric turbulence parameterization over 10-m-tall and relatively sparse deciduous vegetation is quantified. Observations from the Canopy Horizontal Array Turbulence Study (CHATS) field experiment are analyzed to establish the dependence of the turbulent exchange of momentum, heat, and moisture, as well as kinetic energy on canopy phenological evolution through widely used parameterization models based on 1) dimensionless gradients or 2) turbulent kinetic energy (TKE) in the roughness sublayer. Observed vertical turbulent fluxes and gradients of mean wind, temperature, and humidity, as well as velocity variances, are used in combination with empirical dimensionless functions to calculate the turbulent exchange coefficient. The analysis shows that changes in canopy phenology influence the turbulent exchange of all quantities analyzed in this study. The turbulent exchange coefficients of those quantities are twice as large near the canopy top for a leafless canopy than for a full-leaf canopy under unstable and near-neutral conditions. This turbulent exchange coefficient difference is related to the differing penetration depths of the turbulent eddies organized at the canopy top, which increase for a canopy without leaves. The TKE and dissipation analysis under near-neutral atmospheric conditions additionally shows that TKE exchange increases for a leafless canopy because of reduced TKE dissipation efficiency relative to that when the canopy is in full-leaf stage. The study closes with discussion surrounding the implications of these findings for parameterizations used in large-scale models.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.