Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 506287
Title Receptor-Targeted Luminescent Silver Bionanoparticles
Author(s) Bunschoten, Anton; Chin, Patrick T.K.; Buckle, Tessa; Linden, Marte van der; Barendregt, Arjan; Verheijen, Marcel A.; Leeuwen, Fijs W.B. van
Source European Journal of Inorganic Chemistry 2016 (2016)18. - ISSN 1434-1948 - p. 3030 - 3035.
DOI https://doi.org/10.1002/ejic.201501414
Department(s) BioNanoTechnology
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Bioinorganic chemistry - Drug delivery - Imaging agents - Medicinal chemistry - Nanoparticles - Silver
Abstract

Luminescent Ag nanoclusters (Ag-NC) provide the next generation in bionanoparticles, wherein the luminescence (650 nm) and large Stokes shift of these inorganic nanoclusters are favorable for biological imaging. By combining these characteristics with those of human serum albumin (HSA; a protein capable of binding multiple endo- and exogenous compounds), the Ag nanoclusters can be shielded from the environment and functionalized with (receptor) targeting moieties. Encapsulation of the 1.5 nm Ag nanoclusters by HSA resulted in a threefold increase in luminescence intensity and a twofold increase of the luminescence lifetime (1.7 vs. 3.6 µs). To exemplify the potential of this targeted concept, we functionalized HSA-Ag nanoparticles with chemokine receptor 4 (CXCR4) targeting peptides [Ac-TZ14011(CO2H)]. The resulting Ac-TZ14011-HSA-Ag nanoparticles demonstrated specific binding to CXCR4-overexpressing tumor cells. Upon exposure to (ambient) light, particle-functionalized tumor cells were killed. Combined, these experiments illustrate that HSA-Ag nanoparticles may have a potential in biological imaging and possibly even in targeted theranostic applications.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.