Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 506370
Title Shear-induced fibrous structure formation from a pectin/SPI blend
Author(s) Dekkers, Birgit L.; Nikiforidis, Costas; Goot, Atze Jan van der
Source Innovative Food Science and Emerging Technologies 36 (2016). - ISSN 1466-8564 - p. 193 - 200.
DOI https://doi.org/10.1016/j.ifset.2016.07.003
Department(s) Food Process Engineering
VLAG
Biobased Chemistry and Technology
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Biopolymer incompatibility - Fibrous structure - High temperature shear cell - Protein-polysaccharide blend - Shear-induced structuring
Abstract

Well-defined shear flow can be applied to create fibrous, anisotropic samples from biopolymers when present at sufficiently high dry matter contents. Anisotropic biopolymer structures are of high interest especially when made from plant-based polymer blends due to novel food applications, like meat replacers. We investigate shear-induced structuring of a pectin/soy protein isolate (SPI) blend under heating. Scanning Electron Microscope analysis revealed that shear-induced structuring resulted in elongated pectin filaments, oriented in the direction of the shear flow, being entrapped in a continuous protein phase, inducing anisotropy in the blend. The length of the pectin filaments increased upon higher pectin concentrations and shearing temperatures, leading both to higher anisotropy, as measured with the tensile strength analysis. The fibrous appearance of samples became more evident when deforming the product by tearing, which effect was thought to be caused by detachment through or along the long side of the pectin filament. Industrial relevance The efficient preparation of fibrous products based on plant materials is of interest, because these products can be a starting point for the development of meat replacers. Meat replacers made from plant material are a promising, innovative, and sustainable source of protein for human consumption. With an increasing world population, creation of innovative sources of protein are needed to be able to feed everyone (United Nations - Department of Economic and Social Affairs, 2015). Proteins from plant sources, such as soy, are preferred over proteins from animal origin because plant based materials, for example, have lower environmental impact (Day, 2013; Mogensen, Hermansen, Halberg, Dalgaard, R., Vis, & Smith, 2009). In order to replace meat by a plant-based meat replacer, it is important that a similar product in terms of structural properties is developed to improve consumer acceptance (Hoek et al., 2011). Meat replacers are often produced with extrusion cooking, which is a process that has been applied for texturization of plant materials in the application of meat replacers for decades (Campbell, 1981; Harper & Clark, 1978). Previous research showed that a novel technique based on well-defined shear flow can also be used to create fibrous, anisotropic structures from plant-based biopolymers at sufficiently high dry matter contents, with a cone–cone device (Shear Cell) or a concentric cylinder device (Couette Cell) (Grabowska, Tekidou, Boom, & van der Goot, 2014; G. A. Krintiras, Göbel, Bouwman, van der Goot, & Stefanidis, 2014; Manski, van der Goot, & Boom, 2007). This novel technique uses milder conditions for structure formation, due to lower applied shear forces, and has therefore a lower specific mechanical energy input (Grabowska et al., 2016; G.A. Krintiras, Gadea Diaz, van der Goot, Stankiewicz, & Stefanidis, 2015).

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.