Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 506621
Title Effects of lactic acid bacteria silage inoculation on methane emission and productivity of Holstein Friesian dairy cattle
Author(s) Ellis, J.L.; Hindrichsen, I.K.; Klop, G.; Kinley, R.D.; Milora, N.; Bannink, A.; Dijkstra, J.
Source Journal of Dairy Science 99 (2016)9. - ISSN 0022-0302 - p. 7159 - 7174.
DOI https://doi.org/10.3168/jds.2015-10754
Department(s) Animal Nutrition
LR - Animal Nutrition
WIAS
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Lactating cows - Lactic acid bacteria - Methane - Silage inoculant
Abstract

Inoculants of lactic acid bacteria (LAB) are used to improve silage quality and prevent spoilage via increased production of lactic acid and other organic acids and a rapid decline in silage pH. The addition of LAB inoculants to silage has been associated with increases in silage digestibility, dry matter intake (DMI), and milk yield. Given the potential change in silage and rumen fermentation conditions accompanying these silage additives, the aim of this study was to investigate the effect of LAB silage inoculants on DMI, digestibility, milk yield, milk composition, and methane (CH4) production from dairy cows in vivo. Eight mid-lactation Holstein-Friesian dairy cows were grouped into 2 blocks of 4 cows (multiparous and primiparous) and used in a 4 × 4 double Latin square design with 21-d periods. Methane emissions were measured by indirect calorimetry. Treatments were grass silage (mainly ryegrass) with no inoculant (GS), with a long-term inoculant (applied at harvest; GS+L), with a short-term inoculant (applied 16 h before feeding; GS+S), or with both long and short-term inoculants (GS+L+S). All diets consisted of grass silage and concentrate (75:25 on a dry matter basis). The long-term inoculant consisted of a 10:20:70 mixture of Lactobacillus plantarum, Lactococcus lactis, and Lactobacillus buchneri, and the short-term inoculant was a preparation of Lc. lactis. Dry matter intake was not affected by long-term or short-term silage inoculation, nor was dietary neutral detergent fiber or fat digestibility, or N or energy balance. Milk composition (except milk urea) and fat and protein-corrected milk yield were not affected by long- or short-term silage inoculation, nor was milk microbial count. However, milk yield tended to be greater with long-term silage inoculation. Methane expressed in units of grams per day, grams per kilogram of DMI, grams per kilogram of milk, or grams per kilogram of fat and protein-corrected milk yield was not affected by long- or short-term silage inoculation. However, CH4 expressed in units of kilojoules per kilogram of metabolic body weight per day tended to be greater with long-term silage inoculation. Results of this study indicate minimal responses in animal performance to both long- and short-term inoculation of grass silage with LAB. Strain and dose differences as well as different basal silages and ensiling conditions are likely responsible for the lack of significant effects observed here, although positive effects have been observed in other studies.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.