Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 506815
Title Mesophyll conductance and reaction-diffusion models for CO2 transport in C3 leaves; needs, opportunities and challenges
Author(s) Berghuijs, Herman N.C.; Yin, Xinyou; Tri Ho, Q.; Driever, Steven M.; Retta, Moges A.; Nicolaï, Bart M.; Struik, Paul C.
Source Plant Science 252 (2016). - ISSN 0168-9452 - p. 62 - 75.
DOI https://doi.org/10.1016/j.plantsci.2016.05.016
Department(s) PPO/PRI AGRO Toegepaste Plantenecologie
Crop Physiology
PE&RC
Centre for Crop Systems Analysis
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) 3D models - C plants - CO - Mesophyll conductance - Photosynthesis - Reaction-diffusion models
Abstract

One way to increase potential crop yield could be increasing mesophyll conductance gm. This variable determines the difference between the CO2 partial pressure in the intercellular air spaces (Ci) and that near Rubisco (Cc). Various methods can determine gm from gas exchange measurements, often combined with measurements of chlorophyll fluorescence or carbon isotope discrimination. gm lumps all biochemical and physical factors that cause the difference between Cc and Ci. gm appears to vary with Ci. This variability indicates that gm does not satisfy the physical definition of a conductance according to Fick's first law and is thus an apparent parameter. Uncertainty about the mechanisms that determine gm can be limited to some extent by using analytical models that partition gm into separate conductances. Such models are still only capable of describing the CO2 diffusion pathway to a limited extent, as they make implicit assumptions about the position of mitochondria in the cells, which affect the re-assimilation of (photo)respired CO2. Alternatively, reaction-diffusion models may be used. Rather than quantifying gm, these models explicitly account for factors that affect the efficiency of CO2 transport in the mesophyll. These models provide a better mechanistic description of the CO2 diffusion pathways than mesophyll conductance models. Therefore, we argue that reaction-diffusion models should be used as an alternative to mesophyll conductance models, in case the aim of such a study is to identify traits that can be improved to increase gm.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.