Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 507198
Title Genetic Architecture of Feed Efficiency in Mid-Lactation Holstein Dairy Cows
Author(s) Hardie, L.C.; Haar, M.J. van de; Tempelman, R.J.; Weigel, K.A.; Armentano, L.E.; Wiggans, G.R.; Veerkamp, R.F.; Haas, Y. de; Coffey, M.P.; Connor, E.E.; Hanigan, M.D.; Staples, C.R.; Wang, Z.; Spurlock, D.M.
Event Joint Annual Meeting of the American Dairy Science Association®, the Canadian Society of Animal Science and the Western Section of the American Society of Animal Science, Salt Lake City, 2016-07-19/2016-07-23
Department(s) LR - Animal Breeding & Genomics
Animal Breeding and Genetics
WIAS
Publication type Abstract in scientific journal or proceedings
Publication year 2016
Abstract The objective of this study was to explore the genetic architecture and biological basis of feed efficiency in lactating Holstein cows. In total, 4,918 cows with actual or imputed genotypes for 60,671 SNP had individual feed intake, milk yield, milk composition, and body weight records. Cows were from research herds located in the United States, Canada, the Netherlands, and Scotland. Feed efficiency defined as residual feed intake (RFI) was calculated as the residual of the regression of DMI on milk energy (MilkE), metabolic body weight (MBW), and body weight change along with systematic effects of parity class by days in milk fitted as a fifth order Legendre polynomial (fixed), ration within experiment within location (random) and test week (random). Adjusted phenotypes for DMI, MilkE, and MBW were calculated as the sum of the animal and residual components from the regression of each trait on the same systematic effects used for RFI. Animal relationships were represented with a genomic relationship matrix. Genome-wide association studies were performed for RFI, DMI, MilkE, and MBW using the Bayes B method in GenSel version 4.4 with 1% of SNP assumed to have a non-zero effect. One megabase windows with the greatest percent of the total genetic variation explained by the markers (TGVM) were identified, and within windows explaining more than 0.5% of the TGVM, the SNP with the highest posterior probability of a non-zero effect was tested for significant additive and dominance effects. Marker-based heritabilities were estimated for RFI (0.10), DMI (0.25), MilkE (0.20), and MBW (0.44). Tentative results for RFI identified regions explaining the greatest percent of the TGVM on chromosomes X, 9, and 14, and all tested SNP had significant additive effects (p < 0.05). Four of the 10 regions with the greatest effect on DMI also were included in the 10 regions with greatest effects on RFI, but not in the top 10 regions for MilkE or MBW, suggesting a genetic basis for intake that is unrelated to energy consumption required for milk production or maintenance. Candidate genes found within windows explaining the greatest percent of the TGVM for RFI include solute carrier family 25 member 14 and leptin. In conclusion, feed efficiency is a polygenic trait exhibiting genetic variation distinct from that underlying maintenance requirements and milk energy output.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.