Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 507399
Title Large-scale recombinant expression and purificatoin of human tyrosinase suitabel for structural studies
Author(s) Lai, X.; Soler-Lopez, M.; Wichers, H.J.; Dijkstra, Bouke
Source PLoS One 11 (2016)8. - ISSN 1932-6203 - 16 p.
Department(s) FBR Consumer Science & Health
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract Human tyrosinase (TYR) is a glycoprotein that initiates the first two reactions in the melanin biosynthesis pathway. Mutations in its encoding gene cause Oculocutaneous Albinism type I (OCA1), the most severe form of albinism, which is a group of autosomal recessive disorders characterized by reduced or absent production of melanin in skin, hair and eyes. Despite extensive structural and characterization studies of its homologues in lower eukaryotic organisms, the catalytic mechanism of human TYR and the molecular basis of OCA1 are largely unknown. In this work, we have carried out a large-scale recombinant expression of TYR that has enabled us to obtain high yields of pure and active protein, required for crystallization trials and screening of skin whitening agents, which is highly demanded in the cosmetic industry. Addition of an N-terminal honeybee melittin signal peptide for secretion of the produced protein into the (protein-free) medium, as well as a cleavable His-tag at the C-terminus, was crucial for increasing the yield of pure protein. We have successfully crystallized two TYR variants, in both glycosylated and deglycosylated forms, showing preliminary X-ray diffraction patterns at 3.5 Å resolution. Hence, we have established an expression and purification protocol suitable for the crystal structure determination of human TYR, which will give unique atomic insight into the nature and conformation of the residues that shape the substrate binding pocket that will ultimately lead to efficient compound design.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.