Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 507414
Title An evolutionary and functional genomics study of Noccaea caerulescens, a heavy metal hyperaccumulating plant species
Author(s) Wang, Y.
Source University. Promotor(en): Maarten Koornneef, co-promotor(en): Mark Aarts. - Wageningen : Wageningen University - ISBN 9789462578562 - 190 p.
Department(s) Groep KoornneefGroep Koornneef
EPS
Publication type Dissertation, internally prepared
Publication year 2016
Keyword(s) brassicaceae - genomics - hyperaccumulator plants - heavy metals - genes - genetic variation - genomica - hyperaccumulerende planten - zware metalen - genen - genetische variatie
Categories Genetics (General)
Abstract

Noccaea caerulescens is the only known Zn/Cd/Ni hyperaccumulator. The Ganges accession (2n = 14) has an, yet unpublished, genome size of ~319 Mb, with 29,712 predicted genes representing 15,874 gene families. This species is distributed mainly in Europe. Three ecotypes can be distinguished: two metallicolous ecotypes, resident to serpentine soil (Ni enriched) and calamine soil (Zn/Cd enriched), and a non-metallicolous ecotype, growing on regular, non-metalliferous soils. The physiological differences that underlie variation in heavy metal accumulation and tolerance are well-understood, and the molecular basis of hyperaccumulation and tolerance has been explored by transcript profiling in the presence of metals and by comparative transcriptome analysis using N. caerulescens and non-hyperaccumulators such as Arabidopsis thaliana. The genetic variation which emerged during the evolution of metal hyperaccumulation has not yet been investigated. The work described in this thesis considers the identification of genetic variation under selection for Zn/Cd hyperaccumulation and tolerance by next generation resequencing of the wild metallicolous (calamine) and non-metallicolous populations and the generation of a mutant N. caerulescens library for functional analysis. The regulation of flowering time was also investigated, using early flowering mutants selected from the mutant library.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.