Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 507744
Title Wavelet based analysis of TanDEM-X and LiDAR DEMs across a tropical vegetation heterogeneity gradient driven by fire disturbance in Indonesia
Author(s) Grandi, Elsa Carla De; Mitchard, Edward; Hoekman, Dirk
Source Remote Sensing 8 (2016)8. - ISSN 2072-4292
DOI https://doi.org/10.3390/rs8080641
Department(s) Earth System Science
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) El Niño Southern Oscillation - Fire - Forest structure - Interferometric synthetic aperture radar - LiDAR - TanDEM-X - Tropical forest
Abstract

Three-dimensional information provided by TanDEM-X interferometric phase and airborne Light Detection and Ranging (LiDAR) Digital ElevationModels (DEMs) were used to detect differences in vegetation heterogeneity through a disturbance gradient in Indonesia. The range of vegetation types developed as a consequence of fires during the 1997-1998 El Niño. Two-point statistic (wavelet variance and co-variance) was used to assess the dominant spatial frequencies associated with either topographic features or canopy structure. DEMs wavelet spectra were found to be sensitive to canopy structure at short scales (up to 8 m) but increasingly influenced by topographic structures at longer scales. Analysis also indicates that, at short scale, canopy texture is driven by the distribution of heights. Thematic class separation using the Jeffries-Matusita distance (JM) was greater when using the full wavelet signature (LiDAR: 1.29 ≤ JM ≤ 1.39; TanDEM-X: 1.18 ≤ JM ≤ 1.39) compared to using each decomposition scale individually (LiDAR: 0.1 ≤ JM ≤ 1.26; TanDEM-X: 0.1 ≤ JM ≤ 1.1). In some cases, separability with TanDEM-X was similar to the higher resolution LiDAR. The study highlights the potential of 3D information from TanDEM-X and LiDAR DEMs to explore vegetation disturbance history when analyzed using two-point statistics.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.