Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 508162
Title Combating a Global Threat to a Clonal Crop : Banana Black Sigatoka Pathogen Pseudocercospora fijiensis (Synonym Mycosphaerella fijiensis) Genomes Reveal Clues for Disease Control
Author(s) Arango Isaza, Rafael E.; Diaz-Trujillo, Caucasella; Dhillon, Braham; Aerts, Andrea; Carlier, Jean; Crane, Charles F.; V. de Jong, Tristan; Vries, Ineke de; Dietrich, Robert; Farmer, Andrew D.; Fortes Fereira, Claudia; Garcia, Suzana; Guzman, Mauricio; Hamelin, Richard C.; Lindquist, Erika A.; Mehrabi, Rahim; Quiros, Olman; Schmutz, Jeremy; Shapiro, Harris; Reynolds, Elizabeth; Scalliet, Gabriel; Souza, Manoel; Stergiopoulos, Ioannis; Lee, Theo A.J. van der; Wit, Pierre J.G.M. de; Zapater, Marie Françoise; Zwiers, Lute Harm; Grigoriev, Igor V.; Goodwin, Stephen B.; Kema, Gert H.J.
Source Plos Genetics 12 (2016)8. - ISSN 1553-7390
DOI https://doi.org/10.1371/journal.pgen.1005876
Department(s) PPO/PRI Biointeractions and Plant Health
PRI Bioint Diagnostics, Food Safety & Phytosanitary
EPS
Laboratory of Phytopathology
PRI Bioint Entomology & Disease Management
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract

Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis), is the most significant foliar disease of banana worldwide. Due to the lack of effective host resistance, management of this disease requires frequent fungicide applications, which greatly increase the economic and environmental costs to produce banana. Weekly applications in most banana plantations lead to rapid evolution of fungicide-resistant strains within populations causing disease-control failures throughout the world. Given its extremely high economic importance, two strains of P. fijiensis were sequenced and assembled with the aid of a new genetic linkage map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotransposons, making it the largest genome within the Dothideomycetes. Melting-curve assays suggest that the genomes of two closely related members of the Sigatoka disease complex, P. eumusae and P. musae, also are expanded. Electrophoretic karyotyping and analyses of molecular markers in P. fijiensis field populations showed chromosome-length polymorphisms and high genetic diversity. Genetic differentiation was also detected using neutral markers, suggesting strong selection with limited gene flow at the studied geographic scale. Frequencies of fungicide resistance in fungicide-treated plantations were much higher than those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium fulvum Avr4 effector, PfAvr4, was identified in the P. fijiensis genome. Infiltration of the purified PfAVR4 protein into leaves of the resistant banana variety Calcutta 4 resulted in a hypersensitive-like response. This result suggests that Calcutta 4 could carry an unknown resistance gene recognizing PfAVR4. Besides adding to our understanding of the overall Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide treatment schedules to combat this pathogen and in improving the efficiency of banana breeding programs.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.