Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 508573
Title Potential and limitations of inferring ecosystem photosynthetic capacity from leaf functional traits
Author(s) Musavi, Talie; Migliavacca, Mirco; Weg, Martine Janet van de; Kattge, Jens; Wohlfahrt, Georg; Bodegom, Peter M. van; Reichstein, Markus; Bahn, Michael; Carrara, Arnaud; Domingues, Tomas F.; Gavazzi, Michael; Gianelle, Damiano; Gimeno, Cristina; Granier, André; Gruening, Carsten; Havránková, Kateřina; Herbst, Mathias; Hrynkiw, Charmaine; Kalhori, Aram; Kaminski, Thomas; Klumpp, Katja; Kolari, Pasi; Longdoz, Bernard; Minerbi, Stefano; Montagnani, Leonardo; Moors, Eddy; Oechel, Walter C.; Reich, Peter B.; Rohatyn, Shani; Rossi, Alessandra; Rotenberg, Eyal; Varlagin, Andrej; Wilkinson, Matthew; Wirth, Christian; Mahecha, Miguel D.
Source Ecology and Evolution 6 (2016)20. - ISSN 2045-7758 - p. 7352 - 7366.
DOI http://dx.doi.org/10.1002/ece3.2479
Department(s) Alterra - Climate change and adaptive land and water management
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) FLUXNET - Ecosystem functional property - Eddy covariance - Interannual variability - Photosynthetic capacity - Plant traits - Spatiotemporal variability - TRY database
Abstract

The aim of this study was to systematically analyze the potential and limitations of using plant functional trait observations from global databases versus in situ data to improve our understanding of vegetation impacts on ecosystem functional properties (EFPs). Using ecosystem photosynthetic capacity as an example, we first provide an objective approach to derive robust EFP estimates from gross primary productivity (GPP) obtained from eddy covariance flux measurements. Second, we investigate the impact of synchronizing EFPs and plant functional traits in time and space to evaluate their relationships, and the extent to which we can benefit from global plant trait databases to explain the variability of ecosystem photosynthetic capacity. Finally, we identify a set of plant functional traits controlling ecosystem photosynthetic capacity at selected sites. Suitable estimates of the ecosystem photosynthetic capacity can be derived from light response curve of GPP responding to radiation (photosynthetically active radiation or absorbed photosynthetically active radiation). Although the effect of climate is minimized in these calculations, the estimates indicate substantial interannual variation of the photosynthetic capacity, even after removing site-years with confounding factors like disturbance such as fire events. The relationships between foliar nitrogen concentration and ecosystem photosynthetic capacity are tighter when both of the measurements are synchronized in space and time. When using multiple plant traits simultaneously as predictors for ecosystem photosynthetic capacity variation, the combination of leaf carbon to nitrogen ratio with leaf phosphorus content explains the variance of ecosystem photosynthetic capacity best (adjusted R2 = 0.55). Overall, this study provides an objective approach to identify links between leaf level traits and canopy level processes and highlights the relevance of the dynamic nature of ecosystems. Synchronizing measurements of eddy covariance fluxes and plant traits in time and space is shown to be highly relevant to better understand the importance of intra- and interspecific trait variation on ecosystem functioning.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.