Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 508652
Title Can conservation agriculture improve phosphorus (P) availability in weathered soils? Effects of tillage and residue management on soil P status after 9 years in a Kenyan Oxisol
Author(s) Margenot, Andrew; Paul, B.K.; Pulleman, M.M.; Parikh, Sanjai; Fonte, Steven J.
Source Soil & Tillage Research 166 (2017). - ISSN 0167-1987 - p. 157 - 166.
DOI https://doi.org/10.1016/j.still.2016.09.003
Department(s) Chair Soil Biology and Biological Soil Quality
PE&RC
Farming Systems Ecology
Publication type Refereed Article in a scientific journal
Publication year 2017
Abstract The widespread promotion of conservation agriculture (CA) in regions with weathered soils prone to phosphorus (P) deficiency merits explicit consideration of its effect on P availability. A long-term CA field trial located on an acid, weathered soil in western Kenya was evaluated for effects of reduced tillage and residue retention on P availability. Reduced tillage and residues were hypothesized to increase soil aggregation, and as a result, reduce P sorption potential, increase labile and organic P (Po), and stimulate phosphatase activities. After 9 years (18 cropping seasons), residue management had no effect on soil aggregate mean weight diameter (MWD), soil P fractions, or phosphatase potential activities. However, reduced tillage increased soil MWD and labile soil P stocks at 0–15 cm depth. Total P was greater at 0–15 cm depth under reduced tillage, but not for 0–30 cm depth, indicating stratification of P under reduced tillage. Increases in total P at 0–15 cm depth were correlated with maximum P sorption (Pmax sorption), whereas labile P increased with MWD and Po stocks. Reduced tillage also decreased pH and increased Pmax sorption, but these properties were not correlated. Despite a positive association of MWD and Po, weak or no changes were observed for Po and phosphatase activities, nor were there management effects on soil C stocks. Low residue retention rates (2 t maize residue yr−1) and relatively small improvements in soil structure due to reduced tillage were likely insufficient to yield changes in Po. Fertilizer P inputs at recommended rates (60 kg P ha−1 per season) may have also muted treatment effects on organic P cycling, though phosphatase activities were positively correlated with inorganic P fractions. The reduced tillage component of CA offers some improvements in P availability in weathered soils of western Kenya. However, relatively low soil available P across treatments suggests that CA with P fertilization may not be an optimal P management strategy for weathered soils in this region.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.