Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 508873
Title Fitness-associated sexual reproduction in a filamentous fungus
Author(s) Schoustra, S.E.; Rundle, H.D.; Dali, R.; Kassen, R.K.
Source Current Biology 20 (2010)15. - ISSN 0960-9822 - p. 1 - 6.
DOI http://dx.doi.org/10.1016/j.cub.2010.05.060
Department(s) Laboratory of Genetics
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2010
Abstract Sex is a long-standing evolutionary enigma. Although the majority of eukaryotes reproduce sexually at least sometimes [1-3], the evolution of sex from an asexual ancestor has been difficult to explain because it requires sexually reproducing lineages to overcome the manifold costs of sex, including the destruction of favorable gene combinations created by selection [4, 5]. Conditions for the evolution of sex are much broader if individuals can reproduce either sexually or asexually (i.e., facultative sex) and allocate disproportionately more resources to sex when their fitness is low (fitness-associated-sex or FAS [6-10]). Although facultatively sexual organisms have been shown to engage in more sex when stressed [11], direct evidence for FAS is lacking. We provide evidence using 53 genotypes of the filamentous fungus Aspergillus nidulans in a reciprocal transplant experiment across three environments. Different genotypes achieved highest fitness in different environments and genotypes invested relatively more in sex in environments in which their fitness was lower, showing that allocation to sexual reproduction is a function of how well-adapted a genotype is to its environment. FAS in A. nidulans is unlikely to have evolved as a strategy to resist or avoid stress because asexual spores are more dispersive and equally resistant [12, 13].
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.