Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 508916
Title Limited coalescence and Ostwald ripening in emulsions stabilized by hydrophobin HFBII and milk proteins
Author(s) Dimitrova, Lydia M.; Boneva, Mariana P.; Danov, Krassimir D.; Kralchevsky, Peter A.; Basheva, Elka S.; Marinova, Krastanka G.; Petkov, Jordan T.; Stoyanov, Simeon D.
Source Colloids and Surfaces. A: Physicochemical and Engineering Aspects 509 (2016). - ISSN 0927-7757 - p. 521 - 538.
DOI https://doi.org/10.1016/j.colsurfa.2016.09.066
Department(s) Physical Chemistry and Soft Matter
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) Drop size distribution - Emulsification - Emulsion stability - HFBII hydrophobin - Ostwald ripening
Abstract

Hydrophobins are proteins isolated from filamentous fungi, which are excellent foam stabilizers, unlike most of the proteins. In the present study, we demonstrate that hydrophobin HFBII can also serve as excellent emulsion stabilizer. The HFBII adsorption layers at the oil/water interface solidify similarly to those at the air/water interface. The thinning of aqueous films sandwiched between two oil phases ends with the formation of a 6 nm thick protein bilayer, just as in the case of foam films, which results in strong adhesive interactions between the emulsion drops. The drop-size distribution in hydrophobin stabilized oil-in-water emulsions is investigated at various protein concentrations and oil volume fractions. The data analysis indicates that the emulsification occurs in the Kolmogorov regime or in the regime of limited coalescence, depending on the experimental conditions. The emulsions with HFBII are very stable – no changes in the drop-size distributions are observed after storage for 50 days. However, these emulsions are unstable upon stirring, when they are subjected to the action of shear stresses. This instability can be removed by covering the drops with a second adsorption layer from a conventional protein, like β-lactoglobulin. The HFBII surface layer is able to suppress the Ostwald ripening in the case when the disperse phase is oil that exhibits a pronounced solubility in water. Hence, the hydrophobin can be used to stabilize microcapsules of fragrances, flavors, colors or preservatives due to its dense adsorption layers that block the transfer of oil molecules.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.