Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 509001
Title Living on the edge : emergence of spontaneous gac mutations in Pseudomonas protegens during swarming motility
Author(s) Song, Chunxu; Kidarsa, Teresa A.; Mortel, Judith E. van de; Loper, Joyce E.; Raaijmakers, Jos M.
Source Environmental Microbiology 18 (2016)10. - ISSN 1462-2912 - p. 3453 - 3465.
Department(s) Laboratory of Phytopathology
Publication type Refereed Article in a scientific journal
Publication year 2016
Abstract Swarming motility is a flagella‐driven multicellular behaviour that allows bacteria to colonize new niches and escape competition. Here, we investigated the evolution of specific mutations in the GacS/GacA two‐component regulatory system in swarming colonies of Pseudomonas protegens Pf‐5. Experimental evolution assays showed that repeated rounds of swarming by wildtype Pf‐5 drives the accumulation of gacS/gacA spontaneous mutants on the swarming edge. These mutants cannot swarm on their own because they lack production of the biosurfactant orfamide A, but they do co‐swarm with orfamide‐producing wildtype Pf‐5. These co‐swarming assays further demonstrated that ΔgacA mutant cells indeed predominate on the edge and that initial ΔgacA:wildtype Pf‐5 ratios of at least 2:1 lead to a collapse of the swarming colony. Subsequent whole‐genome transcriptome analyses revealed that genes associated with motility, resource acquisition, chemotaxis and efflux were significantly upregulated in ΔgacA mutant on swarming medium. Moreover, transmission electron microscopy showed that ΔgacA mutant cells were longer and more flagellated than wildtype cells, which may explain their predominance on the swarming edge. We postulate that adaptive evolution through point mutations is a common feature of range‐expanding microbial populations and that the putative fitness benefits of these mutations during dispersal of bacteria into new territories are frequency‐dependent.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.