Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 509483
Title Poly(acrylamide)-MWNTs hybrid hydrogel with extremely high mechanical strength
Author(s) Feng, Huanhuan; Zheng, Tingting; Wang, Xuezhen; Wang, Huiliang
Source Open Chemistry 14 (2016)1. - ISSN 2391-5420 - p. 150 - 157.
DOI https://doi.org/10.1515/chem-2016-0017
Department(s) Physical Chemistry and Soft Matter
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2016
Keyword(s) CNTs - high-strength - hydrogels - radiation
Abstract

Poly(acrylamide)-multiwalled carbon nanotubes (PAAm-MWNTs) hybrid hydrogels were prepared through the radiation-induced polymerization and crosslinking of the aqueous solution of acrylamide and well-dispersed MWNTs for the first time. The PAAm gels obtained by the radiation-induced polymerization and cosslinking showed very high mechanical strengths, and the PAAm-MWNTs hybrid hydrogels had improved mechanical properties compared with the PAAm gels, and hence the PAAm-MWNTs hybrid hydrogels showed extremely high compressive and tensile strengths. The hybrid hydrogels with water contents more than 80 wt.% usually did not fracture even at compressive strengths close to or even more than 60 MPa and strains more than 97%. And the hybrid hydrogels had very high elongations (more than 2000% in some cases), especially when the water content was high. The tensile strengths were in sub-MPa. The hybrid PAAm-MWNTs hydrogel is one of the strongest hydrogel even made.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.